Existence of Pseudo-symmetric Solutions to a P -laplacian Four-point Bvps Involving Derivatives on Time Scales
نویسندگان
چکیده
We are concerned with a four-point boundary-value problem of the p-Laplacian dynamic equation on time scales where the nonlinear term contains the first-order derivatives of the dependent variable. By using Krasnosel’skii’s fixed-point theorem, some new sufficient conditions are obtained for the existence of at least single or twin positive pseudo-symmetric solutions to this problem. We also establish the existence of at least triple or arbitrary odd positive pseudo-symmetric solutions to this problem by using the Avery-Peterson fixed-point theorem. As applications, two examples are given to illustrate and explain our main results.
منابع مشابه
Existence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales
In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.
متن کاملPositive solution for Dirichlet $p(t)$-Laplacian BVPs
In this paper we provide existence results for positive solution to Dirichlet p(t)-Laplacian boundary value problems. The sublinear and superlinear cases are considerd.
متن کاملTriple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملEXISTENCE OF POSITIVE PSEUDO-SYMMETRIC SOLUTIONS FOR ONE-DIMENSIONAL p-LAPLACIAN BOUNDARY-VALUE PROBLEMS
We prove the existence of positive pseudo-symmetric solutions for four-point boundary-value problems with p-Laplacian. Also we present an monotone iterative scheme for approximating the solution. The interesting point here is that the nonlinear term f involves the first-order derivative.
متن کاملInfinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کامل